Search results
Results from the WOW.Com Content Network
The marginal revenue function has twice the slope of the inverse demand function. [9] The marginal revenue function is below the inverse demand function at every positive quantity. [10] The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q.
A demand curve is a graph depicting the inverse demand function, [1] a relationship between the price of a certain commodity (the y-axis) and the quantity of that commodity that is demanded at that price (the x-axis).
To compute the inverse demand equation, simply solve for P from the demand equation. [12] For example, if the demand equation is Q = 240 - 2P then the inverse demand equation would be P = 120 - .5Q, the right side of which is the inverse demand function. [13] The inverse demand function is useful in deriving the total and marginal revenue ...
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The elasticity of demand refers to the sensitivity of a goods demand as compared to the fluctuation of other economic factors, such as price, income, etc. The law of demand explains that the relationship between Demand and Price is directly inverse. However, the demand for some goods are more receptive to a change in price than others.
Demand for a good is said to be inelastic when the elasticity is less than one in absolute value: that is, changes in price have a relatively small effect on the quantity demanded. Demand for a good is said to be elastic when the elasticity is greater than one. A good with an elasticity of −2 has elastic demand because quantity demanded falls ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field.