Search results
Results from the WOW.Com Content Network
A variant of diffusion weighted imaging, diffusion spectrum imaging (DSI), [4] was used in deriving the Connectome data sets; DSI is a variant of diffusion-weighted imaging that is sensitive to intra-voxel heterogeneities in diffusion directions caused by crossing fiber tracts and thus allows more accurate mapping of axonal trajectories than ...
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
T2*-weighted imaging of the brain 26 weeks after subarachnoid hemorrhage, showing hemosiderin deposits as hypointense areas. [1] T 2 *-weighted imaging is an MRI sequence to quantify observable or effective T 2 (T2* or "T2-star"). In this sequence, hemorrhages and hemosiderin deposits become hypointense. [2]
The contrast agents used for DCE-MRI are often gadolinium based. Interaction with the gadolinium (Gd) contrast agent (commonly a gadolinium ion chelate) causes the relaxation time of water protons to decrease, and therefore images acquired after gadolinium injection display higher signal in T1-weighted images indicating the present of the agent.
Synthetic MRI was proposed as early as 1984 Bielke et al. [1] and 1985 by Bobman et al. [2] Although scientifically interesting, the method was cumbersome for clinical use. The acquisition duration was too long for a patient to lie still, and the computations needed for quantification were too demanding for the standard commercial computers of the d
VIBE (volumetric interpolated breath-hold examination) is an MRI sequence that produces T1-weighted gradient echo images in three-dimensions (3D). Apart from lower fluid signal intensity than a typical T1-weighted image, other appearances of VIBE images is similar to a typical T1-weighted image.
A number of different imaging modalities or sequences can be used with imaging the nervous system: T 1-weighted (T1W) images: Cerebrospinal fluid is dark. T 1-weighted images are useful for visualizing normal anatomy. T 2-weighted (T2W) images: CSF is light, but fat (and thus white matter) is darker than with T 1.
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields , magnetic field gradients, and radio waves to generate images of the organs in the body.