Search results
Results from the WOW.Com Content Network
The reflux system in a typical industrial distillation column. Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial [1] and laboratory [2] distillations. It is also used in chemistry to supply energy to reactions over a long period of time.
Large-scale industrial fractionation towers use reflux to achieve more efficient separation of products. [3] [5] Reflux refers to the portion of the condensed overhead liquid product from a distillation tower that is returned to the upper part of the tower as shown in images 3 and 4. Inside the tower, the downflowing reflux liquid provides ...
Diagram of a typical industrial distillation tower. Industrial towers use reflux to achieve a more complete separation of products. Reflux refers to the portion of the condensed overhead liquid product from a distillation or fractionation tower that is returned to the upper part of the tower as shown in the schematic diagram of a typical, large ...
In an industrial distillation column, the N t required to achieve a given separation also depends upon the amount of reflux used. Using more reflux decreases the number of plates required and using less reflux increases the number of plates required. Hence, the calculation of N t is usually repeated at various reflux rates.
Inside the column, the downflowing reflux liquid provides cooling and condensation of upflowing vapors thereby increasing the efficacy of the distillation tower. The more reflux and/or more trays provided, the better is the tower's separation of lower boiling materials from higher boiling materials.
For the binary distillation depicted in Figure 1, the required number of theoretical plates is 6. Constructing a McCabe–Thiele diagram is not always straightforward. In continuous distillation with a varying reflux ratio, the mole fraction of the lighter component in the top part of the distillation column will decrease as the reflux ratio ...
It is used in combination with a reflux condenser and a distillation flask for the separation of water from liquids. This may be a continuous removal of the water that is produced during a chemical reaction performed at reflux temperature, such as in esterification reactions. The original setup by Julius Marcusson (invented in 1905) was refined ...
The reflux transfers the concentrated vapor back to the catalyst area. [8] The reflux also returns a portion of the condensed liquids to the column to ensure only the products with the lowest boiling points are captured. As the reflux returns impure mixtures, the catalysts are washed for a prolonged usage. [9]