Ads
related to: second derivative test worksheets pdf printableteacherspayteachers.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.
The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...
First derivative test; Second derivative test; Extreme value theorem; Differential equation; Differential operator; Newton's method; Taylor's theorem; L'Hôpital's rule; General Leibniz rule; Mean value theorem; Logarithmic derivative; Differential (calculus) Related rates; Regiomontanus' angle maximization problem; Rolle's theorem
The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.
The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then x {\displaystyle x} is a local minimum, and if it is negative, then x {\displaystyle x} is a local maximum; if it is zero, then the test is inconclusive.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.
Ads
related to: second derivative test worksheets pdf printableteacherspayteachers.com has been visited by 100K+ users in the past month