enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    It has been argued that quantities defined as ratios Q = A/B having equal dimensions in numerator and denominator are actually only unitless quantities and still have physical dimension defined as dim Q = dim A × dim B −1. [21] For example, moisture content may be defined as a ratio of volumes (volumetric moisture, m 3 ⋅m −3, dimension L ...

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.

  4. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    The dimension of a physical quantity is more fundamental than some scale or unit used to express the amount of that physical quantity. For example, mass is a dimension, while the kilogram is a particular reference quantity chosen to express a quantity of mass. The choice of unit is arbitrary, and its choice is often based on historical precedent.

  5. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.

  6. Category:Dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/Category:Dimensionless...

    Download as PDF; Printable version; ... Pages in category "Dimensionless quantities" The following 9 pages are in this category, out of 9 total. ... (quantity) This ...

  7. Buckingham π theorem - Wikipedia

    en.wikipedia.org/wiki/Buckingham_π_theorem

    Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.

  8. Time-variation of fundamental constants - Wikipedia

    en.wikipedia.org/wiki/Time-variation_of...

    A meaningful test on the time-variation of G would require comparison with a non-gravitational force to obtain a dimensionless quantity, e.g. through the ratio of the gravitational force to the electrostatic force between two electrons, which in turn is related to the dimensionless fine-structure constant.

  9. Oscillator strength - Wikipedia

    en.wikipedia.org/wiki/Oscillator_strength

    In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.