enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix; Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A, [2] which one can apply to obtain all solutions of the linear system =.

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics.Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is; 1386 = 2 · 3 2 · 7 · 11.

  5. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    A simplified version of the LLL factorization algorithm is as follows: calculate a complex (or p-adic) root α of the polynomial () to high precision, then use the Lenstra–Lenstra–Lovász lattice basis reduction algorithm to find an approximate linear relation between 1, α, α 2, α 3, . . . with integer coefficients, which might be an ...

  6. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...

  7. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Non-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation [1] [2] is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting ...

  8. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  9. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    By computing the matrix and reducing it to reduced row echelon form and then easily reading off a basis for the null space, we may find a basis for the Berlekamp subalgebra and hence construct polynomials () in it. We then need to successively compute GCDs of the form above until we find a non-trivial factor.