Search results
Results from the WOW.Com Content Network
In contrast to the relatively facile decarboxylation of β-keto acids, the decarboxylation of α-keto acids presents a mechanistic challenge. Thiamine pyrophosphate (TPP) provides the biochemical and enzymological answer. TPP is the key catalytic cofactor used by enzymes catalyzing non-oxidative and oxidative decarboxylation of α-keto acids.
Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
Pyruvate dehydrogenase deficiency (PDCD) can result from mutations in any of the enzymes or cofactors used to build the complex. Its primary clinical finding is lactic acidosis. [18] Such PDCD mutations, leading to subsequent deficiencies in NAD and FAD production, hinder oxidative phosphorylation processes that are key in aerobic respiration.
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is the first chemical step in photosynthesis, is called carboxylation, the addition of CO 2 to a
This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase , key enzymes that function in the Krebs cycle .
Pyruvate decarboxylation requires a few cofactors in addition to the enzymes that make up the complex. The first is thiamine pyrophosphate (TPP), which is used by pyruvate dehydrogenase to oxidize pyruvate and to form a hydroxyethyl-TPP intermediate. This intermediate is taken up by dihydrolipoyl transacetylase and reacted with a second ...
This gene encodes a subunit that catalyzes the oxidative decarboxylation of alpha-ketoglutarate to Succinyl-CoA at its active site in the fourth step of the citric acid cycle by acting as a base to facilitate the decarboxylation. The main residues responsible for the catalysis are thought to be His 260, Phe 227, Gln685, His 729, Ser302, and His ...