Search results
Results from the WOW.Com Content Network
Phospholipids [1] are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. [2]
The origin of this energy is the fact that creating such an interface exposes some of the lipid tails to water, but the exact orientation of these border lipids is unknown. There is some evidence that both hydrophobic (tails straight) and hydrophilic (heads curved around) pores can coexist. [85] [86]
The heads of glycolipids (glyco- stands for sugar) contain a sphingosine with one or several sugar units attached to it. The hydrophobic chains belong either to: two fatty acids (FA) – in the case of the phosphoglycerides, or; one FA and the hydrocarbon tail of sphingosine – in the case of sphingomyelin and the glycolipids.
The biological membrane is made up of lipids with hydrophobic tails and hydrophilic heads. [6] The hydrophobic tails are hydrocarbon tails whose length and saturation is important in characterizing the cell. [7] Lipid rafts occur when lipid species and proteins aggregate in domains in the membrane.
Lipid bilayers are generally impermeable to ions and polar molecules. The arrangement of hydrophilic heads and hydrophobic tails of the lipid bilayer prevent polar solutes (ex. amino acids, nucleic acids, carbohydrates, proteins, and ions) from diffusing across the membrane, but generally allows for the passive diffusion of hydrophobic molecules.
Phospholipid bilayer. Each phospholipid consists of a polar hydrophilic head (red) and two hydrophobic fatty acid tails. The fatty acid structure affects the bilayer structure. Fatty acids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black).
They are usually organized into a bilayer in membranes with the polar hydrophilic heads sticking outwards to the aqueous environment and the non-polar hydrophobic tails pointing inwards. [6] Glycerophospholipids consist of various diverse species which usually differ slightly in structure. The most basic structure is a phosphatidate.
This is a high energy conformation and, to stabilize this edge, it is likely that some of the lipids rearrange their head groups to point out in a curved boundary. [ citation needed ] The extent to which this occurs is currently unknown and there is some evidence that both hydrophobic (tails straight) and hydrophilic (heads curved around) pores ...