Ads
related to: magnetic lines of force around a bar magnet make- Bulk Discounts up to 30%!
Save on Bulk Purchases!
100+ million magnets in stock
- Mounting Magnets
Magnet Assembly for use with Screws
aka "Pot Magnets"
- Custom Magnets
Custom Magnets for your Application
Magnets Made to your Specifications
- Sewing Magnets
View the Available Products
And Check Pricing Now.
- Bulk Discounts up to 30%!
Search results
Results from the WOW.Com Content Network
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles. There are two simplified models for the nature of these dipoles: the magnetic pole model and the Amperian loop model .
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnetic field stronger for a magnet of comparable strength. [5] A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic ...
Since a bar magnet gets its ferromagnetism from electrons distributed evenly throughout the bar, when a bar magnet is cut in half, each of the resulting pieces is a smaller bar magnet. Even though a magnet is said to have a north pole and a south pole, these two poles cannot be separated from each other.
The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it. Faraday's law of induction makes use of the magnetic flux Φ B through a region of space enclosed by a wire loop.
Magnetic field lines around a "magnetostatic dipole". The magnetic dipole itself is located in the center of the figure, seen from the side, and pointing upward. Any system possessing a net magnetic dipole moment m will produce a dipolar magnetic field (described below) in the space surrounding the system.
Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing. The simplest magnetic quadrupole is two identical bar magnets parallel to each other such that the north pole of one is next to the south of the other and vice ...
Ads
related to: magnetic lines of force around a bar magnet make