Search results
Results from the WOW.Com Content Network
The most common gamma emitter used in medical applications is the nuclear isomer technetium-99m which emits gamma rays in the same energy range as diagnostic X-rays. When this radionuclide tracer is administered to a patient, a gamma camera can be used to form an image of the radioisotope's distribution by detecting the gamma radiation emitted ...
It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 (137m Ba). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable. The photon energy (energy of a single gamma ray) of ...
Gauges - Gauges use the exponential absorption law of gamma rays Level indicators: Source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. Beta or gamma sources are used, depending on the thickness and the density of the material to be measured.
A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. [1] Potential applications for gamma-ray lasers include medical imaging, spacecraft propulsion, and cancer treatment.
The international Radura logo, used to show a food has been treated with ionizing radiation. A portable, trailer-mounted food irradiation machine, c. 1968 Food irradiation (sometimes American English: radurization; British English: radurisation) is the process of exposing food and food packaging to ionizing radiation, such as from gamma rays, x-rays, or electron beams.
The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. [1] The reactions are called (γ,n), (γ,p), and (γ,α). Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier than iron.
The Cherenkov telescopes do not detect the gamma rays directly but instead detect the flashes of visible light produced when gamma rays are absorbed by the Earth's atmosphere. [59] Most gamma-ray emitting sources are actually gamma-ray bursts, objects which only produce gamma radiation for a few milliseconds to thousands of seconds before ...
Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues, for example by overheating or inducing electrical currents. [ 28 ]