enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (⁡) ′ = (⁡ + ⁡) ′ = (⁡) ′ + (⁡) ′.

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′ wherever f is positive. ...

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    The logarithmic derivative provides a simpler expression of the last form, as well as a direct proof that does not involve any recursion. The logarithmic derivative of a function f, denoted here Logder(f), is the derivative of the logarithm of the function.

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The digamma function (), visualized using domain coloring Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line) In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: [1] [2] [3]

  8. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    representing the area between the rectangular hyperbola = and the x-axis, was a logarithmic function, whose base was eventually discovered to be the transcendental number e. The modern notation for the value of this definite integral is ln ⁡ ( x ) {\displaystyle \ln(x)} , the natural logarithm.

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: ⁡ = + ⁡ = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ⁡ ( x ⋅ y ) = ln ⁡ x + ln ⁡ y ...