Search results
Results from the WOW.Com Content Network
Application: The 3-points-1-tangent-property of a parabola can be used for the construction of the tangent at point , while ,, are given. Remark: The 3-points-1-tangent-property of a parabola is an affine version of the 4-point-degeneration of Pascal's theorem.
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...
"The spiral itself is not drawn: we see it as the locus of points where the circles are especially close to each other." [1] An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2]
The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5). The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the -direction. Rotation about the ...
Intersecting with the line at infinity, each conic section has two points at infinity. If these points are real, the curve is a hyperbola; if they are imaginary conjugates, it is an ellipse; if there is only one double point, it is a parabola. If the points at infinity are the cyclic points [1: i: 0] and [1: –i: 0], the conic section is a circle.
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
From the point of view of projective geometry, an elliptic paraboloid is an ellipsoid that is tangent to the plane at infinity. Plane sections. The plane sections of an elliptic paraboloid can be: a parabola, if the plane is parallel to the axis, a point, if the plane is a tangent plane. an ellipse or empty, otherwise.
Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...