Ads
related to: heat pump kwh usage calculator
Search results
Results from the WOW.Com Content Network
A well designed ground source heat pump installation should achieve an SPF of 3.5, or over 5 if linked to a solar-assisted thermal bank. [6] Example: For a heat pump delivering 120,000,000 BTU during the season, when consuming 15,000 kWh, the HSPF can be calculated as : HSPF = 120000000 (BTU) / (1000) / 15000 (kWh) HSPF = 8
In the United States, the efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER) which is defined by the Air Conditioning, Heating, and Refrigeration Institute, a trade association, in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment. [1]
The COP usually exceeds 1, especially in heat pumps, because instead of just converting work to heat (which, if 100% efficient, would be a COP of 1), it pumps additional heat from a heat source to where the heat is required. Most air conditioners have a COP of 3.5 to 5. [3]
The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.
Air-to-air heat pumps provide hot or cold air directly to rooms, but do not usually provide hot water. Air-to-water heat pumps use radiators or underfloor heating to heat a whole house and are often also used to provide domestic hot water. An ASHP can typically gain 4 kWh thermal energy from 1 kWh electric energy.
Heating degree day (HDD) is a measurement designed to quantify the demand for energy needed to heat a building. HDD is derived from measurements of outside air temperature . The estimated average heating energy requirements for a given building at a specific location are considered to be directly proportional to the number of HDD at that location.
A heat pump is an energy efficient way of using refrigerant to move heat from one place to another. In an EV’s case that mostly means taking warmth from the battery and using it to heat the cabin.
So, for a boiler that produces 210 kW (or 700,000 BTU/h) output for each 300 kW (or 1,000,000 BTU/h) heat-equivalent input, its thermal efficiency is 210/300 = 0.70, or 70%. This means that 30% of the energy is lost to the environment. An electric resistance heater has a thermal efficiency close to 100%. [8]
Ads
related to: heat pump kwh usage calculator