enow.com Web Search

  1. Ad

    related to: volume of sphere practice problems
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Activities & Crafts

      Stay creative & active with indoor

      & outdoor activities for kids.

Search results

  1. Results from the WOW.Com Content Network
  2. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  3. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [2]

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = ⁠ π / 6 ⁠ d 3, where d is the diameter of the sphere and also the length of a side of the cube and ⁠ π / 6 ⁠ ≈ 0.5236.

  5. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Subtracting the volume of the cone from the volume of the cylinder gives the volume of the sphere: V S = 4 π − 8 3 π = 4 3 π . {\displaystyle V_{S}=4\pi -{8 \over 3}\pi ={4 \over 3}\pi .} The dependence of the volume of the sphere on the radius is obvious from scaling, although that also was not trivial to make rigorous back then.

  6. Sphericity - Wikipedia

    en.wikipedia.org/wiki/Sphericity

    Defined by Wadell in 1935, [1] the sphericity, , of an object is the ratio of the surface area of a sphere with the same volume to the object's surface area: = where is volume of the object and is the surface area.

  7. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.

  8. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.

  9. Sphere packing in a sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing_in_a_sphere

    Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three ...

  1. Ad

    related to: volume of sphere practice problems