enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the ...

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...

  4. Tangential angle - Wikipedia

    en.wikipedia.org/wiki/Tangential_angle

    The tangential angle φ for an arbitrary curve A in P. In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. [1] (Some authors define the angle as the deviation from the direction of the curve at some fixed starting point.

  5. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    The curve itself is the curve that is tangent to all of its own tangent lines. It follows that = {(,): =} . Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane.

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the ...

  7. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...

  8. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...

  9. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle S and the curve C have the common tangent line at P, and therefore the common normal line. Close to P, the distance between the points of the curve C and the circle S in the normal direction decays as the cube or a higher power of the distance to P in the tangential direction.