enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:

  3. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    Given the volume of a non-spherical object V, one can calculate its volume-equivalent radius by setting = or, alternatively: = For example, a cube of side length L has a volume of . Setting that volume to be equal that of a sphere imply that

  4. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii and , separated by some distance , and for which their surfaces intersect at =. That is, the curvature of the base comes from sphere 2.

  5. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    Plot of the surface-area:volume ratio (SA:V) for a 3-dimensional ball, showing the ratio decline inversely as the radius of the ball increases. A solid sphere or ball is a three-dimensional object, being the solid figure bounded by a sphere. (In geometry, the term sphere properly refers only to the surface, so a sphere thus lacks volume in this ...

  6. Wigner–Seitz radius - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_radius

    The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...

  7. Sauter mean diameter - Wikipedia

    en.wikipedia.org/wiki/Sauter_mean_diameter

    In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size.It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest.

  8. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  9. Accessible surface area - Wikipedia

    en.wikipedia.org/wiki/Accessible_surface_area

    Volume Voxelator — A web-based tool to generate excluded surfaces. ASV freeware Analytical calculation of the volume and surface of the union of n spheres (Monte-Carlo calculation also provided). Vorlume Computing Surface Area and Volume of a Family of 3D Balls. GetArea Calculate solvent accessible surface area of proteins online.