Search results
Results from the WOW.Com Content Network
For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.
As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction 5 / 7 when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Every homogeneous system has at least one solution, known as the zero (or trivial) solution, which is obtained by assigning the value of zero to each of the variables. If the system has a non-singular matrix (det(A) ≠ 0) then it is also the only solution. If the system has a singular matrix then there is a solution set with an infinite number ...
Bézout's theorem asserts that a well-behaved system whose equations have degrees d 1, ..., d n has at most d 1 ⋅⋅⋅d n solutions. This bound is sharp. If all the degrees are equal to d, this bound becomes d n and is exponential in the number of variables. (The fundamental theorem of algebra is the special case n = 1.)
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r, then the L-function L(E, s) associated with it vanishes to order r at s = 1. Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proven that there is no algorithmic way to decide whether a given ...
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers , rationals , or real numbers , then xy = 0 implies x = 0 or y = 0 .