enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oddo–Harkins rule - Wikipedia

    en.wikipedia.org/wiki/Oddo–Harkins_rule

    Abundance of elements in Earth's crust per million Si atoms (y axis is logarithmic); the Oddo–Harkins rule is visible for most of the metallic elements.. All atoms heavier than hydrogen are formed in stars or supernovae through nucleosynthesis, when gravity, temperature and pressure reach levels high enough to fuse protons and neutrons together.

  3. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    An example is calcium-40, with 20 neutrons and 20 protons, which is the heaviest stable isotope made of the same number of protons and neutrons. Both calcium-48 and nickel-48 are doubly magic because calcium-48 has 20 protons and 28 neutrons while nickel-48 has 28 protons and 20 neutrons. Calcium-48 is very neutron-rich for such a relatively ...

  4. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    All elements have multiple isotopes, variants with the same number of protons but different numbers of neutrons. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are ...

  5. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  6. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Within a single element, the number of neutrons may vary, determining the isotope of that element. The total number of protons and neutrons determine the nuclide. The number of neutrons relative to the protons determines the stability of the nucleus, with certain isotopes undergoing radioactive decay. [44]

  7. Charge radius - Wikipedia

    en.wikipedia.org/wiki/Charge_radius

    The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = 10 −15 metre. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with atomic spectroscopy.

  8. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: p + + e − → n + ν e. The process is reversible; neutrons can convert back to protons through beta decay, a common form of radioactive decay. In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes.

  9. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...