enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.

  3. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The 4n+3 chain of uranium-235 is commonly called the "actinium series" or "actinium cascade". Beginning with the naturally-occurring isotope uranium-235, this decay series includes the following elements: actinium, astatine, bismuth, francium, lead, polonium, protactinium, radium, radon, thallium, and thorium. All are present, at least ...

  4. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of the age of the sample ...

  5. Uranium–lead dating - Wikipedia

    en.wikipedia.org/wiki/Uranium–lead_dating

    Since the exact rate at which uranium decays into lead is known, the current ratio of lead to uranium in a sample of the mineral can be used to reliably determine its age. The method relies on two separate decay chains , the uranium series from 238 U to 206 Pb, with a half-life of 4.47 billion years and the actinium series from 235 U to 207 Pb ...

  6. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Uranium-235 was the first isotope that was found to be fissile. Other naturally occurring isotopes are fissionable, but not fissile. [citation needed] On bombardment with slow neutrons, uranium-235 most of the time splits into two smaller nuclei, releasing nuclear binding energy and more neutrons.

  7. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.

  8. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    96% of the mass is the remaining uranium: most of the original 238 U and a little 235 U. Usually 235 U would be less than 0.8% of the mass along with 0.4% 236 U. Reprocessed uranium will contain 236 U , which is not found in nature; this is one isotope that can be used as a fingerprint for spent reactor fuel.

  9. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    The first and most common is uranium-235. This is the fissile isotope of uranium and it makes up approximately 0.7% of all naturally occurring uranium. [13] Because of the small amount of 235 U that exists, it is considered a non-renewable energy source despite being found in rock formations around the world. [14]