Search results
Results from the WOW.Com Content Network
The oxy-acetylene (and other oxy-fuel gas mixtures) welding torch remains a mainstay heat source for manual brazing, as well as metal forming, preparation, and localized heat treating. In addition, oxy-fuel cutting is still widely used, both in heavy industry and light industrial and repair operations.
Nineteenth-century electrolytic cell for producing oxyhydrogen. Oxyhydrogen is a mixture of hydrogen (H 2) and oxygen (O 2) gases.This gaseous mixture is used for torches to process refractory materials and was the first [1] gaseous mixture used for welding.
However, oxy-fuel is a viable alternative to removing CO 2 from the flue gas from a conventional air-fired fossil fuel plant. However, an oxygen concentrator might be able to help, as it simply removes nitrogen. In industries other than power generation, oxy-fuel combustion can be competitive due to higher sensible heat availability. Oxy-fuel ...
While blowing air is effective, blowing oxygen produces higher temperatures, and it is also practical to invert the roles of the gasses and blow fuel through air. Contemporary blowtorches and oxy-fuel welding and cutting torches can be considered to be modern developments of the blowpipe. Kit for blowpipe analysis Carl Osterland, Freiberg, c. 1870
A flashback arrestor or flash arrestor is a gas safety device most commonly used in oxy-fuel welding and cutting to stop the flame or reverse flow of gas back up into the equipment or supply line. It protects the user and equipment from damage or explosions.
During the 1980s, a class of thermal spray processes called high velocity oxy-fuel spraying was developed. A mixture of gaseous or liquid fuel and oxygen is fed into a combustion chamber, where they are ignited and combusted continuously. The resultant hot gas at a pressure close to 1 MPa emanates through a converging–diverging nozzle and ...
This is a list of welding processes, separated into their respective categories.The associated N reference numbers (second column) are specified in ISO 4063 (in the European Union published as EN ISO 4063). [1]
PAC differs from oxy-fuel cutting in that the plasma process operates by using the arc to melt the metal whereas in the oxy-fuel process, the oxygen oxidizes the metal and the heat from the exothermic reaction melts the metal. Unlike oxy-fuel cutting, the PAC process can be applied to cutting metals which form refractory oxides such as ...