Search results
Results from the WOW.Com Content Network
A synapse during re-uptake. Note that some neurotransmitters are lost and not reabsorbed. Reuptake is the reabsorption of a neurotransmitter by a neurotransmitter transporter located along the plasma membrane of an axon terminal (i.e., the pre-synaptic neuron at a synapse) or glial cell after it has performed its function of transmitting a neural impulse.
Selective reabsorption is the process whereby certain molecules (e.g. ions, glucose and amino acids), after being filtered out of the capillaries along with nitrogenous waste products (i.e. urea) and water in the glomerulus, are reabsorbed from the filtrate as they pass through the nephron. [1]
If the cell body is normally in an inhibited state, the only way to generate an action potential at the axon hillock is to reduce the cell body's inhibition. In this "open the gates" strategy, the excitatory message is like a racehorse ready to run down the track, but first, the inhibitory starting gate must be removed.
Selective serotonin reuptake inhibitors (SSRIs) are a class of drugs that are typically used as antidepressants in the treatment of major depressive disorder, anxiety disorders, and other psychological conditions. SSRIs increase the extracellular level of the neurotransmitter serotonin by limiting its reabsorption (reuptake) into the ...
In fact, it is also believed that the selective NRI nisoxetine was discovered prior to the invention of fluoxetine. [199] However, the selective NRIs did not get promoted in the same way as did the SSRIs, possibly due to an increased risk of suicide. This was accounted for on the basis of the energizing effect that these agents have. [200]
The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that regulates the transfer of solutes and chemicals between the circulatory system and the central nervous system, thus protecting the brain from harmful or unwanted substances in the blood. [1]
A specific type of body fat — visceral fat — around the midsection has been linked to the abnormal proteins that develop in the brain and are a hallmark of Alzheimer’s, according to findings ...
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...