Search results
Results from the WOW.Com Content Network
The following is a list of straight-chain alkanes, the total number of isomers of each (including branched chains), and their common names, sorted by number of carbon atoms. [ 1 ] [ 2 ] Number of C atoms
A straight-chain alkane will have a boiling point higher than a branched-chain alkane due to the greater surface area in contact, and thus greater van der Waals forces, between adjacent molecules. For example, compare isobutane (2-methylpropane) and n-butane (butane), which boil at −12 and 0 °C, and 2,2-dimethylbutane and 2,3-dimethylbutane ...
2-Methylpentane, trivially known as isohexane, is a branched-chain alkane with the molecular formula C 6 H 14. It is a structural isomer of hexane composed of a methyl group bonded to the second carbon atom in a pentane chain. Using a quantitative structure-activity relationship (QSAR) prediction model, 2-Methylpentane has a research octane ...
3-Methylpentane is a branched alkane with the molecular formula C 6 H 14. It is a structural isomer of hexane composed of a methyl group bonded to the third carbon atom in a pentane chain. It is of similar structure to the isomeric 2-methylpentane, which has the methyl group located on the second carbon of the pentane chain.
Neopentane, also called 2,2-dimethylpropane, is a double-branched-chain alkane with five carbon atoms. Neopentane is a flammable gas at room temperature and pressure which can condense into a highly volatile liquid on a cold day, in an ice bath, or when compressed to a higher pressure.
In general, straight-chain alkanes are converted to branched isomers by heating in the presence of a catalyst. Examples include isomerisation of n-butane to isobutane and pentane to isopentane. Highly branched alkanes have favorable combustion characteristics for internal combustion engines. [2] Further examples are the Wagner–Meerwein ...
Bicyclic alkanes include bicycloundecane, decalin, and housane. Polycyclic alkanes include cubane, basketane, and tetrahedrane. Spiro compounds have two or more rings that are connected through only one carbon atom. The mode of ring-closing in the formation of many alicyclic compounds can be predicted by Baldwin's rules.
For example, in living organisms, the open-chain isomer of glucose usually exists only transiently, in small amounts; D-glucose is the usual isomer; and L-glucose is rare. Straight-chain molecules are often not literally straight, in the sense that their bond angles are often not 180°, but the name reflects that they are schematically straight.