Search results
Results from the WOW.Com Content Network
A measurable subset of a standard probability space is a standard probability space. It is assumed that the set is not a null set, and is endowed with the conditional measure. See (Rokhlin 1952, Sect. 2.3 (p. 14)) and (Haezendonck 1973, Proposition 5). Every probability measure on a standard Borel space turns it into a standard probability space.
Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem; among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]
In holography, the space–bandwidth product determines the resolution and quality of the reconstructed holographic image. The SBP sets a limit on the amount of information that can be recorded and reconstructed. In digital holography, the SBP of a holographic imaging system can be calculated by analyzing at the recorded interference pattern. [3]
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
Every adapted right continuous Feller process on a filtered probability space (,, ()) satisfies the strong Markov property with respect to the filtration (+), i.e., for each (+)-stopping time, conditioned on the event {<}, we have that for each , + is independent of + given .
Given a discrete-time stationary ergodic stochastic process on the probability space (,,), the asymptotic equipartition property is an assertion that, almost surely, (,, …,) where () or simply denotes the entropy rate of , which must exist for all discrete-time stationary processes including the ergodic ones.
In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.
Let (Ω, Σ, P) be a probability space.Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces.Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.