Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
Within the point vortex model, the motion of vortices in a two-dimensional ideal fluid is described by equations of motion that contain only first-order time derivatives. I.e. in contrast to Newtonian mechanics, it is the velocity and not the acceleration that is determined by their relative positions.
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. [3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables.
When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action ...
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ˙ = ˙ = Momentum , which corresponds to the vertical component of angular momentum = ˙ , is a constant of motion. That is a consequence of the rotational symmetry of the ...
The configuration space and the phase space of the dynamical system both are Euclidean spaces, i. e. they are equipped with a Euclidean structure.The Euclidean structure of them is defined so that the kinetic energy of the single multidimensional particle with the unit mass = is equal to the sum of kinetic energies of the three-dimensional particles with the masses , …,: