Ads
related to: real image optics
Search results
Results from the WOW.Com Content Network
A real image is the collection of focus points actually made by converging/diverging rays, while a virtual image is the collection of focus points made by extensions of diverging or converging rays. In other words, a real image is an image which is located in the plane of convergence for the light rays that originate from a given object.
In both diagrams, f is the focal point, O is the object, and I is the virtual image, shown in grey. Solid blue lines indicate (real) light rays and dashed blue lines indicate backward extension of the real rays. In optics, the image of an object is defined as the collection of focus points of light rays coming from the object.
Images of black letters in a thin convex lens of focal length f are shown in red. Selected rays are shown for letters E, I and K in blue, green and orange, respectively. Note that E (at 2f) has an equal-size, real and inverted image; I (at f) has its image at infinity; and K (at f/2) has a double-size, virtual and upright image.
Since the entrance pupil and exit pupil are images of the aperture stop, for a real image pupil, the lateral distance of the marginal ray from the optical axis at the pupil location defines the pupil size. For a virtual image pupil, an extended line, forward along the marginal ray before the first optical element or backward along the marginal ...
If one makes the analogy of taking a photograph to rendering a 3D image, the surface of the film is the image plane. In this case, the viewing transformation is a projection that maps the world onto the image plane. A rectangular region of this plane, called the viewing window or viewport, maps to the monitor.
A compound microscope uses a lens close to the object being viewed to collect light (called the objective lens), which focuses a real image of the object inside the microscope (image 1). That image is then magnified by a second lens or group of lenses (called the eyepiece ) that gives the viewer an enlarged inverted virtual image of the object ...
Formally, the optical transfer function is defined as the Fourier transform of the point spread function (PSF, that is, the impulse response of the optics, the image of a point source). As a Fourier transform, the OTF is generally complex-valued; however, it is real-valued in the common case of a PSF that is symmetric about its center.
In a telescope the objective is the lens at the front end of a refracting telescope (such as binoculars or telescopic sights) or the image-forming primary mirror of a reflecting or catadioptric telescope. A telescope's light-gathering power and angular resolution are both directly related to the diameter (or "aperture") of its objective lens or ...
Ads
related to: real image optics