enow.com Web Search

  1. Ad

    related to: 1 2 3 series sum theorem practice test

Search results

  1. Results from the WOW.Com Content Network
  2. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.

  3. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  4. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    The geometric series1 / 2 ⁠ − ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ − ⁠ 1 / 16 ⁠ + ⋯ sums to ⁠ 1 / 3 ⁠.. The alternating harmonic series has a finite sum but the harmonic series does not.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  6. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  7. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    Now, note that a 1 − a 2 is a lower bound of the monotonically decreasing sequence S 2m+1, the monotone convergence theorem then implies that this sequence converges as m approaches infinity. Similarly, the sequence of even partial sum converges too.

  8. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows: = | |, where "lim sup" denotes the limit superior (possibly ∞; if the limit exists it is the same value). If r < 1, then the series

  9. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    The test can be useful for series where n appears as in a denominator in f. For the most basic example of this sort, the harmonic series ∑ n = 11 / n {\textstyle \sum _{n=1}^{\infty }1/n} is transformed into the series1 {\textstyle \sum 1} , which clearly diverges.

  1. Ad

    related to: 1 2 3 series sum theorem practice test