Search results
Results from the WOW.Com Content Network
The Lorentz force law provides an expression for the force upon a charged body that can be plugged into Newton's second law in order to calculate its acceleration. [ 78 ] : 85 According to the Lorentz force law, a charged body in an electric field experiences a force in the direction of that field, a force proportional to its charge q ...
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
Then, by taking time derivatives, formulas are derived that relate the velocity of the particle as seen in the two frames, and the acceleration relative to each frame. Using these accelerations, the fictitious forces are identified by comparing Newton's second law as formulated in the two different frames.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force , has a magnitude [ 7 ] F c = m a c = m v 2 r {\displaystyle F_{c}=ma_{c}=m{\frac {v^{2}}{r}}} and is, like centripetal acceleration, directed ...
A modern statement of Newton's second law is a vector equation: =, where is the momentum of the system, and is the net force. [ 17 ] : 399 If a body is in equilibrium, there is zero net force by definition (balanced forces may be present nevertheless).
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...
When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated.