enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Orange, an open-source data mining and machine learning software suite. Python, an open-source programming language widely used in data mining and machine learning. R, an open-source programming language for statistical computing and graphics. Together with Python one of the most popular languages for data science.

  3. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  4. Discretization of continuous features - Wikipedia

    en.wikipedia.org/wiki/Discretization_of...

    Download as PDF; Printable version; ... as in making a histogram. ... Many machine learning algorithms are known to produce better models by discretizing continuous ...

  5. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation. Tensorboard, the visualization kit associated with TensorFlow, also implements t-SNE (online version) The Julia package TSne implements t-SNE

  6. Anscombe's quartet - Wikipedia

    en.wikipedia.org/wiki/Anscombe's_quartet

    The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.

  7. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Homoscedastic distributions are especially useful to derive statistical pattern recognition and machine learning algorithms. One popular example of an algorithm that assumes homoscedasticity is Fisher's linear discriminant analysis. The concept of homoscedasticity can be applied to distributions on spheres. [27]

  8. Statistical graphics - Wikipedia

    en.wikipedia.org/wiki/Statistical_graphics

    Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century.

  9. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    Otsu's method performs well when the histogram has a bimodal distribution with a deep and sharp valley between the two peaks. [ 6 ] Like all other global thresholding methods, Otsu's method performs badly in case of heavy noise, small objects size, inhomogeneous lighting and larger intra-class than inter-class variance. [ 7 ]