Search results
Results from the WOW.Com Content Network
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence.
PARI/GP is a computer algebra system that facilitates number-theory computation. Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series , algebraic numbers, and transcendental functions . [ 3 ]
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In historical works about Greek mathematics the preferred term used to be figured number. [ 3 ] [ 4 ] In a use going back to Jacob Bernoulli 's Ars Conjectandi , [ 1 ] the term figurate number is used for triangular numbers made up of successive integers , tetrahedral numbers made up of successive triangular numbers, etc.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by
For example, P(6) = 4, and there are 4 ways to write 11 as an ordered sum in which each term is odd and greater than 1: 11 ; 5 + 3 + 3 ; 3 + 5 + 3 ; 3 + 3 + 5. The number of ways of writing n as an ordered sum in which each term is congruent to 2 mod 3 is equal to P(n − 4).