Search results
Results from the WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
A glitch (circled in red) occurring during circuit operation. Glitch removal is the elimination of glitches—unnecessary signal transitions without functionality—from electronic circuits. Power dissipation of a gate occurs in two ways: static power dissipation and dynamic power dissipation. Glitch power comes under dynamic dissipation in the ...
The Clausius–Clapeyron relation does not make sense for second-order phase transitions, [1] as both specific entropy and specific volume do not change in second-order phase transitions. Quantitative consideration
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
At the melting pressure, liquid and solid are in equilibrium. The third law demands that the entropies of the solid and liquid are equal at T = 0. As a result, the latent heat of melting is zero, and the slope of the melting curve extrapolates to zero as a result of the Clausius–Clapeyron equation. [13]: 140
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.
These foundations enabled him to make substantive extensions of Clausius' work, including the formula, now known as the Clausius–Clapeyron relation, which characterises the phase transition between two phases of matter. He further considered questions of phase transitions in what later became known as Stefan problems.