Search results
Results from the WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
The Clausius–Clapeyron relation does not make sense for second-order phase transitions, [1] as both specific entropy and specific volume do not change in second-order phase transitions. Quantitative consideration
At the melting pressure, liquid and solid are in equilibrium. The third law demands that the entropies of the solid and liquid are equal at T = 0. As a result, the latent heat of melting is zero, and the slope of the melting curve extrapolates to zero as a result of the Clausius–Clapeyron equation. [13]: 140
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
It goes on to say, however, that the exact equation is called the Clausius-Clapeyron equation in most texts for engineering thermodynamics and physics. (On the previous page, discussing the exact equation, the book said the exact version was called the Clapeyron equation, but said that it was also known as the Clausius-Clapeyron equation.)
These foundations enabled him to make substantive extensions of Clausius' work, including the formula, now known as the Clausius–Clapeyron relation, which characterises the phase transition between two phases of matter. He further considered questions of phase transitions in what later became known as Stefan problems.
Ideally contact resistance should be low and stable, however weak contact pressure, mechanical vibration, and corrosion can alter contact resistance significantly, leading to resistive heating and circuit failure. Soldered joints can fail in many ways including electromigration and the formation of brittle intermetallic layers. Some failures ...
The pressure value that is attempted to compute, is such that when plugged into momentum equations a divergence-free velocity field results. The mass imbalance is often also used for control of the outer loop. The name of this class of methods stems from the fact that the correction of the velocity field is computed through the pressure-field.