Search results
Results from the WOW.Com Content Network
Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can be recognized by a T-cell receptor.
MHC I antigen presentation typically (considering cross-presentation) involves the endogenous pathway of antigen processing, and MHC II antigen presentation involves the exogenous pathway of antigen processing. Cross-presentation involves parts of the exogenous and the endogenous pathways but ultimately involves the latter portion of the ...
Antigen presentation stimulates immature T cells to become either mature "cytotoxic" CD8+ cells or mature "helper" CD4+ cells. An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation.
Once the exogenous antigen peptide is loaded onto the MHC class I molecule, the complex is exported to the cell surface for antigen cross presentation. There is also evidence that suggest that cross-presentation requires a separate pathway in a proportion of CD8(+) dendritic cells that are able to cross-present.
The latter case induces recognition by antigen-specific Th2 cells or Tfh cells, leading to activation of the B cell through binding of TCR to the MHC-antigen complex. It is followed by synthesis and presentation of CD40L (CD154) on the Th2 cell, which binds to CD40 on the B cell, thus the Th2 cell can co-stimulate the B cell. [11]
An APC takes up an antigenic protein, performs antigen processing, and returns a molecular fraction of it—a fraction termed the epitope—and displays it on the APC's surface coupled within an MHC class II molecule (antigen presentation). On the cell's surface, the epitope can be recognized by immunologic structures like T-cell receptors (TCRs).
The peptide translocation from the cytosol into the lumen of the ER is accomplished by the transporter associated with antigen processing (TAP). TAP is a member of the ABC transporter family and is a heterodimeric multimembrane-spanning polypeptide consisting of TAP1 and TAP2. The two subunits form a peptide binding site and two ATP binding ...
Processing begins when DNA-PK binds to each broken DNA end and recruits several other proteins including Artemis, XRCC4, DNA ligase IV, Cernunnos, and several DNA polymerases. [16] DNA-PK forms a complex that leads to its autophosphorylation, resulting in activation of Artemis. The coding end hairpins are opened by the activity of Artemis. [17]