Search results
Results from the WOW.Com Content Network
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.
For example, the lack-of-fit test for assessing the correctness of the functional part of the model can aid in interpreting a borderline residual plot. One common situation when numerical validation methods take precedence over graphical methods is when the number of parameters being estimated is relatively close to the size of the data set.
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]
If only a fixed number of pairwise comparisons are to be made, the Tukey–Kramer method will result in a more precise confidence interval. In the general case when many or all contrasts might be of interest, the Scheffé method is more appropriate and will give narrower confidence intervals in the case of a large number of comparisons.
In order to understand this, it is necessary to understand the test used to evaluate differences between groups, the F-test. The F -test is computed by dividing the explained variance between groups (e.g., medical recovery differences) by the unexplained variance within the groups.
An F-test is a statistical test that compares variances. It's used to determine if the variances of two samples, or if the ratios of variances among multiple samples, are significantly different. The test calculates a statistic, represented by the random variable F, and checks if it follows an F-distribution.
Bartlett's test is sensitive to departures from normality. That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality. Levene's test and the Brown–Forsythe test are alternatives to the Bartlett test that are less sensitive to departures from normality. [3]
The squared ranks test is arguably a test of significance of difference of data dispersion not variance per se. This becomes important, for example, when the Levene's test fails to satisfy the rather generous conditions for normality associated with that test and is a default alternative under those conditions for certain statistical software ...