Search results
Results from the WOW.Com Content Network
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
Important signals of this sort include a radio's intermediate-frequency (IF), radio-frequency (RF) signal, and the individual channels of a filter bank. If n > 1, then the conditions result in what is sometimes referred to as undersampling, bandpass sampling, or using a sampling rate less than the Nyquist rate (2f H). For the case of a given ...
When a bandpass signal is sampled slower than its Nyquist rate, the samples are indistinguishable from samples of a low-frequency alias of the high-frequency signal. That is often done purposefully in such a way that the lowest-frequency alias satisfies the Nyquist criterion, because the bandpass signal is still uniquely represented and ...
Theoretically, a bandwidth-limited signal can be perfectly reconstructed if sampled at the Nyquist rate or above it. The Nyquist rate is defined as twice the bandwidth of the signal. Oversampling is capable of improving resolution and signal-to-noise ratio, and can be helpful in avoiding aliasing and phase distortion by relaxing anti-aliasing ...
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. [1]
A signal may be intentionally sampled at a higher rate to reduce the requirements and distortion of the anti-alias filter. For example, compare CD audio with high-resolution audio. CD audio filters the signal to a passband edge of 20 kHz, with a stopband Nyquist frequency of 22.05 kHz and sample rate of 44.1 kHz.