enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the erroneous rejection of a true null hypothesis. A type II error, or a false negative, is the erroneous failure in bringing about appropriate rejection of a false null hypothesis. [1] Type I errors can be thought of as errors of commission, in which the status quo is ...

  3. Testing hypotheses suggested by the data - Wikipedia

    en.wikipedia.org/wiki/Testing_hypotheses...

    Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    If the null hypothesis is valid, the only thing the test person can do is guess. For every card, the probability (relative frequency) of any single suit appearing is 1/4. If the alternative is valid, the test subject will predict the suit correctly with probability greater than 1/4. We will call the probability of guessing correctly p. The ...

  5. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    Consider the following example. Given the test scores of two random samples, one of men and one of women, does one group score better than the other? A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean ...

  6. Error exponents in hypothesis testing - Wikipedia

    en.wikipedia.org/wiki/Error_exponents_in...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  7. Lindley's paradox - Wikipedia

    en.wikipedia.org/wiki/Lindley's_paradox

    Naaman [3] proposed an adaption of the significance level to the sample size in order to control false positives: α n, such that α n = n − r with r > 1/2. At least in the numerical example, taking r = 1/2, results in a significance level of 0.00318, so the frequentist would not reject the null hypothesis, which is in agreement with the ...

  8. Template : Classification of multiple hypothesis tests

    en.wikipedia.org/wiki/Template:Classification_of...

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  9. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    For example, if one test is performed at the 5% level and the corresponding null hypothesis is true, there is only a 5% risk of incorrectly rejecting the null hypothesis. However, if 100 tests are each conducted at the 5% level and all corresponding null hypotheses are true, the expected number of incorrect rejections (also known as false ...