Search results
Results from the WOW.Com Content Network
An example of an RNA stem-loop. If now a second RNA stem-loop has complementary base-sequence, the two loops can base pair resulting in a kissing loop. This animated GIF shows two RNA loops (orange and green) bind to each other in a structure called a kissing loop.
In RNA, adenine-uracil pairings featuring two hydrogen bonds are equal to the adenine-thymine bond of DNA. Base stacking interactions, which align the pi bonds of the bases' aromatic rings in a favorable orientation, also promote helix formation. The stability of the loop also influences the formation of the stem-loop structure.
In order to create, i.e., design, RNA for any given secondary structure, two or three bases would not be enough, but four bases are enough. [16] This is likely why nature has "chosen" a four base alphabet: fewer than four would not allow the creation of all structures, while more than four bases are not necessary to do so.
Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).
An unnatural base pair (UBP) is a designed subunit (or nucleobase) of DNA which is created in a laboratory and does not occur in nature. DNA sequences have been described which use newly created nucleobases to form a third base pair, in addition to the two base pairs found in nature, A-T (adenine – thymine) and G-C (guanine – cytosine).
A tetraloop is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA: UNCG, GNRA, and CUUG (N is one of the four nucleotides and R is a purine). UNCG is the most stable tetraloop. [9] Pseudoknot is an RNA secondary structure first identified in turnip yellow mosaic virus. [10] It is minimally ...
Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine, so those three bases are called the pyrimidine bases. [ 6 ] Each of the base pairs in a typical double- helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G.
An RNA pseudoknot structure. For example, the RNA component of human telomerase. [7] A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem.