Search results
Results from the WOW.Com Content Network
For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of C n.
For instance, Picard's theorem asserts that the range of an entire function can take only three possible forms: , {}, or {} for some . In other words, if two distinct complex numbers z {\displaystyle z} and w {\displaystyle w} are not in the range of an entire function f {\displaystyle f} , then f {\displaystyle f} is a constant function.
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1] The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the image of f. The image of a function is a subset of its codomain so it might not coincide with it.
In the mathematical theory of Banach spaces, the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range. The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires .
The definition of global minimum point also proceeds similarly. If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗.
Mathematical models are used in applied mathematics and in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences [1] (such as economics, psychology, sociology, political science). It ...