Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the two legs. Mathematically, this can be written as a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , where a is the length of one leg, b is the length of ...
The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
from the formula for the tangent of the difference of angles. Using s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).