Search results
Results from the WOW.Com Content Network
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
Cyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative measure of the number of linearly independent paths through a program's source code. It was developed by Thomas J. McCabe, Sr. in 1976. Cyclomatic complexity is computed using the control-flow graph of the program.
One of the simplest (although not the most time efficient in the worst case) planar algorithms. Created independently by Chand & Kapur in 1970 and R. A. Jarvis in 1973. It has O(nh) time complexity, where n is the number of points in the set, and h is the number of points in the hull. In the worst case the complexity is O(n 2). Graham scan ...
Since the time taken on different inputs of the same size can be different, the worst-case time complexity () is defined to be the maximum time taken over all inputs of size . If T ( n ) {\displaystyle T(n)} is a polynomial in n {\displaystyle n} , then the algorithm is said to be a polynomial time algorithm.
Analysis of algorithms, typically using concepts like time complexity, can be used to get an estimate of the running time as a function of the size of the input data. The result is normally expressed using Big O notation. This is useful for comparing algorithms, especially when a large amount of data is to be processed.
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs.