Search results
Results from the WOW.Com Content Network
The Downs cell uses a carbon anode and an iron cathode.The electrolyte is sodium chloride that has been heated to the liquid state. Although solid sodium chloride is a poor conductor of electricity, when molten the sodium and chloride ions are mobilized, which become charge carriers and allow conduction of electric current.
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [ 1 ] which are commodity chemicals required by industry.
The first type, shown on the right and left of the diagram, uses an electrolyte of sodium chloride solution, a graphite anode (A), and a mercury cathode (M). The other type of cell, shown in the center of the diagram, uses an electrolyte of sodium hydroxide solution, a mercury anode (M), and an iron cathode (D). The mercury electrode is common ...
Molten salts (fluoride, chloride, and nitrate) can be used as heat transfer fluids as well as for thermal storage. This thermal storage is used in concentrated solar power plants. [8] [9] Molten-salt reactors are a type of nuclear reactor that uses molten salt(s) as a coolant or as a solvent in which the fissile material is dissolved ...
Chlorine can be manufactured by the electrolysis of a sodium chloride solution (), which is known as the Chloralkali process.The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2).
A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]
For example, the electrolysis of brine produces hydrogen and chlorine gases which bubble from the electrolyte and are collected. The initial overall reaction is thus: [22] 2 NaCl + 2 H 2 O → 2 NaOH + H 2 + Cl 2. The reaction at the anode results in chlorine gas from chlorine ions: 2 Cl − → Cl 2 + 2 e −
Diagram of Castner process apparatus. The Castner process is a process for manufacturing sodium metal by electrolysis of molten sodium hydroxide at approximately 330 °C. Below that temperature, the melt would solidify; above that temperature, the molten sodium would start to dissolve in the melt.