enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.

  3. Pyomo - Wikipedia

    en.wikipedia.org/wiki/Pyomo

    Pyomo allows users to formulate optimization problems in Python in a manner that is similar to the notation commonly used in mathematical optimization. Pyomo supports an object-oriented style of formulating optimization models, which are defined with a variety of modeling components: sets, scalar and multidimensional parameters, decision variables, objectives, constraints, equations ...

  4. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  5. Semi-infinite programming - Wikipedia

    en.wikipedia.org/wiki/Semi-infinite_programming

    In optimization theory, semi-infinite programming (SIP) is an optimization problem with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.

  6. MOSEK - Wikipedia

    en.wikipedia.org/wiki/MOSEK

    The applicability of the solver varies widely and is commonly used for solving problems in areas such as engineering, finance and computer science. The emphasis in MOSEK is on solving large-scale sparse problems, in particular the interior-point optimizer for linear, conic quadratic (a.k.a. Second-order cone programming) and semi-definite (aka.

  7. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...

  8. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.

  9. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.