Search results
Results from the WOW.Com Content Network
The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.
More generally, field extensions provide another class of examples of vector spaces, particularly in algebra and algebraic number theory: a field F containing a smaller field E is an E-vector space, by the given multiplication and addition operations of F. [34]
Normed vector space, a vector space on which a norm is defined; Hilbert space; Ordered vector space, a vector space equipped with a partial order; Super vector space, name for a Z 2-graded vector space; Symplectic vector space, a vector space V equipped with a non-degenerate, skew-symmetric, bilinear form
The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...
One of the most familiar examples of a Hilbert space is the Euclidean vector space consisting of three-dimensional vectors, denoted by R 3, and equipped with the dot product. The dot product takes two vectors x and y , and produces a real number x ⋅ y .
This is a list of vector spaces in abstract mathematics, by Wikipedia page. Banach space; Besov space; Bochner space; Dual space; Euclidean space; Fock space; Fréchet space; Hardy space; Hilbert space; Hölder space; LF-space; L p space; Minkowski space; Montel space; Morrey–Campanato space; Orlicz space; Riesz space; Schwartz space; Sobolev ...
Representation theory also depends heavily on the type of vector space on which the group acts. One distinguishes between finite-dimensional representations and infinite-dimensional ones. In the infinite-dimensional case, additional structures are important (e.g. whether or not the space is a Hilbert space, Banach space, etc.).
A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix in the corresponding (initial) vector space. The components of covectors (as opposed to those of vectors) are said to be ...