Search results
Results from the WOW.Com Content Network
For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...
An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...
There is a direct correspondence between n-by-n square matrices and linear transformations from an n-dimensional vector space into itself, given any basis of the vector space. Hence, in a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices, or the language of linear ...
Normed vector space, a vector space on which a norm is defined; Hilbert space; Ordered vector space, a vector space equipped with a partial order; Super vector space, name for a Z 2-graded vector space; Symplectic vector space, a vector space V equipped with a non-degenerate, skew-symmetric, bilinear form
The earliest examples of these were function spaces, each one adapted to its own class of problems. These examples shared many common features, and these features were soon abstracted into Hilbert spaces, Banach spaces, and more general topological vector spaces. These were a powerful toolkit for the solution of a wide range of mathematical ...
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
All Banach spaces and Fréchet spaces are F-spaces. In particular, a Banach space is an F-space with an additional requirement that (,) = | | (,). [1]. The L p spaces can be made into F-spaces for all and for they can be made into locally convex and thus Fréchet spaces and even Banach spaces.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.