enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  3. Transfer-matrix method (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The transfer-matrix method is used when the total system can be broken into a sequence of subsystems that interact only with adjacent subsystems. For example, a three-dimensional cubical lattice of spins in an Ising model can be decomposed into a sequence of two-dimensional planar lattices of spins that interact only adjacently.

  4. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The fastest known algorithms for the multiplication of very large integers use the polynomial multiplication method outlined above. Integers can be treated as the value of a polynomial evaluated specifically at the number base, with the coefficients of the polynomial corresponding to the digits in that base (ex. 123 = 1 ⋅ 10 2 + 2 ⋅ 10 1 ...

  6. Matrix method - Wikipedia

    en.wikipedia.org/wiki/Matrix_method

    The matrix method is a structural analysis method used as a fundamental principle in many applications in civil engineering. The method is carried out, using either a stiffness matrix or a flexibility matrix.

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    This can be derived using blockwise matrix inversion. While the identity is primarily used on matrices, it holds in a general ring or in an Ab-category. The Woodbury matrix identity allows cheap computation of inverses and solutions to linear equations. However, little is known about the numerical stability of the formula.

  8. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,

  9. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.