enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A stronger form of continuity is uniform continuity. In order theory , especially in domain theory , a related concept of continuity is Scott continuity . As an example, the function H ( t ) denoting the height of a growing flower at time t would be considered continuous.

  4. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1). These random variables converge in distribution to a uniform U(0, 1), whereas their densities do not converge at all. [3] However, according to Scheffé’s theorem, convergence of the probability density functions implies convergence in ...

  5. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  6. Heine–Borel theorem - Wikipedia

    en.wikipedia.org/wiki/Heine–Borel_theorem

    The history of what today is called the Heine–Borel theorem starts in the 19th century, with the search for solid foundations of real analysis. Central to the theory was the concept of uniform continuity and the theorem stating that every continuous function on a closed and bounded interval is uniformly continuous.

  7. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  8. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus — differentiation and integration .

  9. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]