enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    The blue line is an example of one of the v constant lines. Plotted are the light cones at various values of r. The green lines are various u constant lines. Note that they approach r=2GM assymptotically. In these coordinates, the horizon is the black hole horizon (nothing can come out).

  3. Boyer–Lindquist coordinates - Wikipedia

    en.wikipedia.org/wiki/Boyer–Lindquist_coordinates

    In the mathematical description of general relativity, the Boyer–Lindquist coordinates [1] are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole. The Hamiltonian for particle motion in Kerr spacetime is separable in Boyer–Lindquist coordinates.

  4. Reissner–Nordström metric - Wikipedia

    en.wikipedia.org/wiki/Reissner–Nordström_metric

    Although charged black holes with r Q ≪ r s are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon. [8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component diverges; that is, where + = =

  5. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  6. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  7. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...

  8. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...

  9. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    Slow motion computer simulation of the black hole binary system GW150914 as seen by a nearby observer, during 0.33 s of its final inspiral, merge, and ringdown.The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme gravitational lensing, as spacetime itself is distorted and dragged around by the rotating black holes.