enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.

  3. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    In mathematical analysis, the alternating series test proves that an alternating series is convergent when its terms decrease monotonically in absolute value and approach zero in the limit. The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test , Leibniz's rule , or the Leibniz criterion .

  4. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence.

  8. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10. Unlike the harmonic series, which does not exclude those numbers, this series converges, specifically to approximately 22.9207 . A palindromic number is one that remains the same when its digits are reversed.

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]