Search results
Results from the WOW.Com Content Network
In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
Roll-off is the steepness of a transfer function with frequency, particularly in electrical network analysis, and most especially in connection with filter circuits in the transition between a passband and a stopband.
As I understand the bode plot, is the transfer function as it is on the imaginary axis (s=jw). The question then is, why are poles or zeros on the real axis of the transfer function create corners and phase changes on the imaginary axis, at the same value of frequency as the pole or zero?
The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [ 1 ] Dielectric spectroscopy (which falls in a subcategory of the impedance spectroscopy ) measures the dielectric properties of a medium as a function of frequency .
The imaginary part of a response function describes how a system dissipates energy, since it is in phase with the driving force. [ citation needed ] The Kramers–Kronig relations imply that observing the dissipative response of a system is sufficient to determine its out of phase (reactive) response, and vice versa.