enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  3. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...

  4. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The same vector can be represented in two different bases (purple and red arrows). In mathematics, a set B of vectors in a vector space V is called a basis (pl.: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B.

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Infinite-dimensional vector spaces occur in many areas of mathematics. For example, polynomial rings are countably infinite-dimensional vector spaces, and many function spaces have the cardinality of the continuum as a dimension. Many vector spaces that are considered in mathematics are also endowed with other structures.

  6. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space.

  7. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  8. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .

  9. Dimension (vector space) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(vector_space)

    A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.