Search results
Results from the WOW.Com Content Network
The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] () ′ = ′ ′ = () ′.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b. The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering.
The complex logarithm is needed to define exponentiation in which the base is a complex number. Namely, if a {\displaystyle a} and b {\displaystyle b} are complex numbers with a ≠ 0 {\displaystyle a\not =0} , one can use the principal value to define a b = e b Log a {\displaystyle a^{b}=e^{b\operatorname {Log} a}} .
representing the area between the rectangular hyperbola = and the x-axis, was a logarithmic function, whose base was eventually discovered to be the transcendental number e. The modern notation for the value of this definite integral is ln ( x ) {\displaystyle \ln(x)} , the natural logarithm.
The logarithmic derivative provides a simpler expression of the last form, as well as a direct proof that does not involve any recursion. The logarithmic derivative of a function f, denoted here Logder(f), is the derivative of the logarithm of the function.